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Adsorbed polymers and nodeavoiding Levy flights 
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Abstract. We discuss the conformation of a linear flexible polymer chain in the vicinity 
of an attractive wall. We show that the structure in the adsorbing plane may be analysed 
in terms of a node avoiding Levy flight. This provides a complementary insight to the 
scaling approach. 

1. Introduction 

There is renewed interest in the conformation of linear polymer chains in the vicinity 
of an interacting wall (de Gennes 1979, de Gennes and Pincus 1983, Binder 1983, 
Eisenriegler et al 1982, Eisenriegler 1983). Depending on the quality of the solvent 
and of the sign of the interaction between the polymer and the wall, one may find 
depletion (de Gennes 1981), adsorption (de Gennes and Pincus 1983) or wetting 
(Schmidt and Binder 1987). In this paper we consider a single chain in the vicinity 
of an attractive wall. Let N be the number of monomers of the polymer and ( -kTS) 
the excess energy per monomer on the wall. When S is positive and large enough (de 
Gennes 1979), the chain is adsorbed by the wall. The adsorption threshold corresponds 
to an attractive energy of order k T :  

6,- N-' (1) 
where cp is a crossover exponent which was calculated by renormalisation group (Diehl 
and Dietrich 1981) and computer simulations (Ishinabe 1982, 1984, Kremer 1983) and 
N' is the number of monomers on the wall at the threshold. 

Below the threshold, the chain behaves as a self-avoiding walk: its radius of gyration 
R varies as R - N"a (Flory 1953, de Gennes 1979) where a is the step length of the 
polymer. 

At and beyond the threshold, the chain is made of a succession of loops with 
different lengths or sizes connecting monomers on the wall. The distribution of sizes 
of these loops was recently calculated by de Gennes (1982) and is rather broad. Because 
there is a distribution of lengths for the distances between two successive monomers 
on the wall, we will show that the projection of the polymer on the adsorbing surface 
is equivalent to a node-avoiding Levy flight (NALF).  This equivalence will allow us to 
evaluate the parallel radius of the adsorbed chain. Furthermore, it will enlighten 
recently proposed scaling laws. 

In what follows we first recall the main results on polymer adsorption in P 2 and 
those on Levy flights in 9 3. The analysis of the parallel radius in terms of Levy flights 
is given in the final section. 

t Laboratoire Commun CEA-CNRS. 
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2. Distribution of step lengths in the attractive wall 

In this section, we recall the main results on the adsorption of one flexible polymer 
chain by an attractive wall. For more details, see de Gennes and Pincus (1983) or 
Eisenriegler et a1 (1982). Consider an attractive wall, with an excess (dimensionless) 
free energy S per adsorbed monomer. Above the adsorption threshold (defined by 
equation ( l ) ) ,  the polymer is adsorbed on the surface. A diffuse layer with an increased 
density results and a concentration profile cp( z )  along the direction normal to the wall: 
a-*cp(z) is the monomer concentration per unit surface on the wall at a distance z 
from the wall. Three regions were considered (de Gennes 1979). 

(i)  Proximal: a << z << D where a is the step length and 

where U is the self-avoiding walk exponent (Flory 1953, de Gennes 1979) and the width 
D of the adsorbed layer is sometimes called the extrapolation length (Binder 1983). 
In this region 

with 

cps - 6" (4) 

m = ( v  + cp  - 1) /  v ( 5 )  

a = v(d  - l ) / p  - I .  (6) 

(ii) Central: D<< z<< RF where 

RF- N"a (7)  

is the Flory radius of a single chain. In this region, the layer has a simple self-similar 
structure, which yields 

(8) 

(iii) In the distal region: z >> RF, the monomer density decreases exponentially to 

Two limits may be considered. 
(i) At the threshold, equations (1) and (2) imply that the extrapolation length is 

of the order of the Flory radius RF. Thus the central region disappears and the 
proximal region covers the whole range up to RF. 

(ii) In the opposite limit of strong adsorption (S - l),  D is of the order of the step 
length, so that the proximal region shrinks out and only the central and distal regions 
remain. 

The structure of the chain is made of loops of different sizes joining monomers on 
the surface. The concentration profile cp(z) corresponds to a broad distribution of 
loop sizes. Let a-*f (n ,  8) be the number per unit area of monomers that belong to 
the loops made of n monomers. Evaluating the number of monomers per unit surface 
between the distances z and z + d z  provides a relation between cp(z) and f ( n ,  6): 

(9) 

v d - l ) / v  
cp(z) - (a /z ) '  

with d the dimension of space. 

zero. 

f ( n ,  6) dn = cp(z) dz. 
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We know that the structure of the chain at the threshold is still isotropic (de Gennes 
1979, Eisenriegler et a1 1982). Thus it is plausible to assume that the loops are isotropic, 
with bulk behaviour: 

n - ( z / a ) ’ / ” .  (10) 

It is now possible to assume a scaled form for the distribution of loops. It is clear 
from equations (2), (3), (8) and (10) that f ( n ,  S )  has different power law behaviours 
for distances smaller or larger than D. The crossover corresponds to a typical loop size 

n* - Dl/” - S - l / V  

Thus we assume 

f ( n ,  6 )  - n - T p ( n S ” q )  

p ( x  + 0) - X T ’  

and using equations ( 3 ) - (  lo), we obtain 

p ( x +  CO) -constant 

with 

T = v ( d  - 1) 

and 

T - 7’ = Q. 

As noted by de Gennes (1982), loops may be divided into two categories. 
For small loops, with 1 < n < &-‘I*, using (11)-(13), we have 

f ( n ,  6 )  - w - “ .  

f ( n ,  S) - n - v ( d - l ) .  

For large loops, with 8-l” < n < N, we have 

(13a 

( 1 3 b  

The refative importance of each of these categories depends on the parameter 6: 
whereas at the threshold only ‘small’ loops are present, for strong adsorption ( 6  - 1) 
small loops are no longer present, but it is very important to realise that there are still 
‘large’ loops, and that a finite fraction of the monomers belongs to these loops. 

Consider now two successive monomers on the surface. These are linked by a 
loop. Let f be the distance between these monomers. Because there is a distribution 
of sizes for the loops, there is a distribution S ( I )  for the distances. S(f) is related to 
the number distribution of loops: 

dl  1 
a n  

S ( 1 ) - = - - j ( n ,  8 )  dn 

and, from the isotropy of loops, equation (10) 

I -  n”a. ( loa)  
Thus the projection of the adsorbed chain on the surface does not have a constant 
step length but a rather broad distribution of step lengths S(  I ) .  Using equations (1 1) 
and ( l o a )  we get two categories of steps: short steps, a < 1 < 0, 
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large steps, D < 1 < RF, 

S(1) - (a) - d  

One can think of the projected structure on the ( d  - 1)-dimensional surface as a 
random walk with broad step length distribution S(1). Note that two monomers on 
the wall cannot be located on the same site, while the links joining them may intersect 
because they are just projections of the loops. Because S(1) is slowly decaying, we 
argue that such a walk is a node-avoiding Levy flight (NALF) (Mandelbrot 1975). 

3. Node-avoiding Levy flights 

Consider, in a ( d  - 1)-dimensional space, a walk with a step length distribution S (  I), 
for large I: 

when U is small (see below and figure 1). Such a walk is called a Levy flight and does 
not reduce to a self-avoiding walk. In the following, we will be interested in the radius 
of gyration of such a flight and in its dependence on the number M of steps. In 
analogy with self-avoiding walks, we assume? (Grassberger 1985) 

(18) (log RM) - V' log M 
where the brackets are geometrical averages and RM the end-to-end distance of the 
walk. 

1 2 
U 

Figure 1. The different regimes for a NALF within a Flory theory. ( d  - 1 )  is the space 
dimension. The probability for a step I is P ( I )  - I - ' - " .  The different regimes are as follows: 
( 1 )  SAW: u ' = 3 / ( d + l ) ;  (2)  random walk, v ' = i ;  (3) classical Levy flight, u ' = l / u ;  (4) 
NALF, v ' = ( 2 u - l ) / [ d u - ( d  -1)];(5)collapsed, Y'= l / d - l .  Thelinesarecrossoverlines. 

t An equivalent definition is that the correlation function vanes as g ( q )  - q-""' in Fourier space. 
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If S(1) decreases fast enough, namely if a > 2, the second moment of the distribution 
(17) is finite. Then Y’ is equal to the Flory exponent Y (Flory 1953) and the flight is 
equivalent to a self-avoiding walk, or to a random walk depending on the value of d. 

When a < 2 the second moment of S( I )  is infinite and the exponent V I  depends on 
U. Halley and Nakanishi (1985) and Grassberger (1985) showed that there is an 
equivalence between such a flight and a magnetic model with long-range interactions. 
The latter was considered by Fisher et a1 (1972) and Sak (1978) who showed that the 
upper critical dimension is 

d,  - 1 = 2 ~ .  (19) 

Thus when 20 S d - 1 the excluded volume interactions are irrelevant and the flight is 
classical: 

U’= l/a. (20) 

When 2a> d - 1, these interactions are relevant, and one may calculate Y’ within a 
Flory theory (de Gennes 1979, Flory 1953, Grassberger 1985). Let R be the radius of 
a NALF made of M steps. The Flory free energy is (de Gennes 1986) 

where the first term is the elastic energy and the second one the interaction contribution. 
Note the unusual form of the former, which provides the classical behaviour for high 
space dimensions. The exponent (a - 1) may be understood if one analyses a stretched 
flight in terms of Pincus blobs (de Gennes 1979, Pincus 1976). 

Minimising the free energy with respect to R we find 

2a -1  
c d  - ( d  - 1 ) 

d - 1 < 2 ~ .  

Finally, we note that the fractal dimension has to be smaller than both the space 
dimension ( d  - 1) and the unperturbed dimension a. Thus 

d - 1 < inf(a, 1). 
1 

y’=-  
d - 1  

These results are summarised on figure 1 which gives the different regimes in a 
(a, d - 1) plane. 

4. Parallel extension of the polymer 

In this section we determine the parallel radius of the chain on the attractive wall. We 
consider both the adsorption threshold and the strong adsorption regime ( 8  - 1). The 
discussion is limited to d = 3 .  The two-dimensional case will be considered in the 
conclusion. 

4.1. The adsorption threshold 

As noted in Q 2, only the proximal and distal regions exist at the threshold. Thus there 
is a distribution of loop sizes for the adsorbed chain given by equations (1 l ) ,  (12a) 
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and (13b),  and thus a distribution of step lengths for the projection of the polymer 
on the surface given by relation (16a): 

Comparing with equation (17), we find that the projection is a NALF with 

U =  Q / U  1 (24) 
with Q = = V = $ .  

From figure 1, we obtain 
v‘ = 0 - 1  % 1, 

At the threshold, the number M of nodes is 

M - N ’ .  

Thus at the threshold, the parallel extension RI, of the chain is 

(25) 

as expected because the chain is assumed to be still isotropic at the threshold. Note 
that cr = 1 and d - 1 = 2 in figure 1 correspond to a point on the crossover line between 
classical and critical Levy flights. 

RII - aN‘”’ == aN315 

4.2. Strong adsorption 

The number of monomers on the wall may be written in the scaled form 

M = N‘@f(GN’) (26) 
where f ( x )  is an unknown function. Its behaviour far from the threshold may be 
obtained by noting that a finite fraction of the monomers is on the wall 

M - N. 

Assuming a power law behaviour for f ( x ) ,  we obtain 
M - NG(l-V)/9 

For strong adsorption, 6 - 1 ,  the number of steps is proportional to N. 

the distribution of step lengths for the projection of the polymer is 
As discussed in 0 2, only the central and distal regions exist in this regime. Thus 

S ( I )  - (-!) -3. 

Thus we have a NALF with a = 2 .  As discussed above, this value for U corresponds 
to a marginal case between SAW and NALF where both the Flory exponent and relation 
(22) are valid. Therefore we find 

RI,  - N3’4a. 

It is important to realise that although the parallel radius is proportional to the 
two-dimensional Flory radius-with eventual logarithmic corrections-the chain is still 
three dimensional: a finite fraction of the monomers are in the long loops extending 
in the solution. The radius of the chain in the normal direction is still proportional 
to R, -aN3” .  
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4.3. Intermediate case: N-’ << 6 << 1 

For intermediate energies or temperatures, the number of monomers on the surface is 
given by relation (27). One may reduce this case to the strong adsorption case discussed 
by introducing adsorption blobs, made of n monomers such that 

6n‘ - 1 .  (29) 

The radius of these blobs is of the order of the extrapolation length, defined by equation 

6 - n3/5a 6 - ’ a  (30) 

6 -  D. 

(2): 

If we take these blobs as elementary units, the resulting chain, made of N / n  units of 
length 6 each, is in a strong adsorption regime. Using relation (28) we obtain for this 
intermediate case 

RI, - N 3 / 4 6 ’ / 4 ~ .  

Equation (3 1) was previously derived by Eisenriegler er a1 (1982) using scaling argu- 
ments. The same remark applies as in the previous subsection: the radius of the chain 
in the direction normal to the surface is of the order of the Flory radius. 

5. Discussion 

We have shown that the parallel extension of an adsorbed chain may be discussed in 
terms of node-avoiding Levy flight. For the three-dimensional case we considered so 
far, this discussion confirms all the results derived previously. 

Now we consider the case of a two-dimensional chain with an adsorbing line: if 
we make the same analysis as above, we know that at the threshold the number of 
adsorbed monomers is 

M - N ‘ .  (32) 

If we assume a distribution of loops, and thus of step sizes, we still have a Levy flight 
and 

RII - a M ” -  aN’”‘. (33) 

Assuming the structure is still isotropic at the threshold implies 

v’= v/cp = l/u. (34) 

us1 (35) 

Thus the corresponding point in figure 1 has to be in region 3. This in turn implies 

and thus 
a s v = t .  

This upper bound, cp =$, is in agreement with recent numerical results (Kremer 
1983, Ishinabe 1984). 
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The present scaling approach, however, might be questioned in this two-dimensional 
case, and for low space dimensions more generally: let us return for instance to relation 
(8) for the concentration profile in the central region. If we then consider the excess 
concentration in this region: 

- d =2.  (37a)  
More generally, as soon as the exponent in the integrand of (37) is smaller than unity, 
Tc depends on the upper limit RF rather than on the lower one, D, and thus a divergence 
appears in (37a) .  Within a Flory theory, v = 3 / ( d + 2 ) ,  we find that this is the case 
with low space dimensions: 

Because of this divergence, one might question the definition of the profile cp(z) as 
given by equations (3)-(8). 

As a conclusion, we have shown that the parallel structure of an adsorbed linear 
polymer may be considered as a node-avoiding Levy flight. In the three-dimensional 
case, this equivalence reveals useful to describe the structure constituted by the 
anchoring points on the surface. In the case of a two-dimensional system with an 
adsorbing line, this leads to an upper bound cp = $ for the crossover exponent, but the 
whole scaling approach might be questioned. 

d < d i = $ .  (38) 
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